
Theoret. Chim, Acta (Berl.) 33, 1--6 (1974) 
�9 by Springer-Verlag 1974 

Commentationes 

Optimized Transformation of Four Center Integrals 
Geerd H. F. Diercksen 

Max-Planck-Institut ftir Physik und Astrophysik, 8000 Miinchen 40, Germany 

Received August 10, 1973 

The nS-order algorithm for the transformation of the quantummechanical four center 
integrals is analyzed. An optimum implementation of this algorithm for computers with a 
reasonable amount of direct-access storage is described. 
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It is a commonly used approach in quantum chemistry, as well as in many 
other fields of physics, to express mathematical functions i, j, k, l , . . .  as linear 
combinations of another set of functions p, q, r, s . . . .  

np 

i= ~ CipP, (1) 
p = l  

usually in order to allow, or to simplify certain mathematical operations to be 
performed. In quantum chemistry, examples of such functions i are symmetry 
orbitals, self-consistent-field orbitals, and correlation orbitals. In this case, the 
functions r are usually exponential - or gaussian type atomic functions, normally 
called basis functions. 

In many quantum chemical applications the computation of integrals among 
the functions a, b, c, d . . . .  of one- and two electron operators O(l), O(1, 2) of the 
following type are necessary 

(alb) = ~ a(1) O(1) b(1) d z l ,  (2.1) 

(ablcd) - ~ a(1) b(1) O(1, 2) c(2) d(2) d'c 1 d'c 2 . (2.2) 

The integrals over the different sets of functions related by (1) can be calculated 
according to the following formulas if the appropriate integrals over one set of 
functions are available: 

(iU) -- ~ cie cjq(plq), (3.1) 
P,q 

(ijlkl)= ~ Cip cjq Ckr %(pqlrs). (3.2) 
p , q , r , s  

Transformations of this form are necessary in all quantum chemical calculations 
beyond the Hartree-Fock level. The transformation (3.1) of the one electron 
integrals is trivial for (nearly) any range of indices and will not be discussed here. 
It involves 3/2 n 3 (n i = n j  -~ np = nq = n) multiplications and additions to compute 
a lower triangle of the full matrix. 
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The transformation of the two-electron integrals (3.2) is much more time con- 
suming and has been a stumbling-block for all calculations beyond the Hartree- 
Fock level which use a reasonable size of basis set. It is obvious that the trans- 
formation (3.2) has to be done stepwise by forming four partial sums, and then 
is of the n 5 order in multiplications and additions. Actually, the big problem of this 
transformation has never been the unawareness of the nS-algorithm, although 
it has only been stated in the literature as late as 1970 [1], but rather that it has 
not been possible to implement this algorithm on the previously available com- 
puters. Most approaches used today [2, 3] are based on an algorithm proposed 
in 1963 [4] which is of the order n 6 in multiplications and additions and which 
is especially suitable for tape-oriented ( s e q u e n t i a l  external storage) computers. 
An economic implementation of the nS-algorithm has only become possible after 
an efficient reordering algorithm for four-indexed quantities has been proposed, 
which is based on the use of large size r a n d o m  a c c e s s  external storage of the 
order of l 0  6 floating point words [5]. An efficient four-index transformation 
based on this reordering procedure has implicitly been sketched [6]. An approach 
based on the n 5 algorithm has recently been described, but seems inapplicable 
for any set of functions of adequate size because of severe storage problems [7]. 
In the following an implementation of the n 5 algorithm will be described, which 
is based on the four indexed quantities reordering algorithm referenced [5], 
and which has been simultaniously and independently developed to a very 
similar approach outlined previously [6]. The present algorithm has been 
programmed and fully tested up to 70 functions and gives encouraging re- 
suits. 

Theory 

The transformation (3.2) can be split up into the following four partial sums: 

(iq]rs) = ~ c i v ( p q l r s ) ,  (4.1) 
P 

( i j lrs)  = ~ c jq ( iq l r s ) ,  (4.2) 
q 

(/jlks) = ~ Ck~(ijlrs),  (4.3) 
r 

( i j lk l)  = ~ czs ( i j l ks ) .  (4.4) 
$ 

The range of the indices i , j ,  k ,  . . .  is assumed to be 1, 2, ... ni; 1, 2 .... nj; etc. The 
above partial sums (4) then will involve the following number of multiplications 
and additions (ma): 

m a  11 = ni �9 np �9 nq �9 nr " ns , 

m a  12 = hi"  ni  " nq " nr " ns , 

m a  13 = ni " n j  �9 nk " nr " n s ,  

m a  14 = ni " n j  �9 n k �9 nt "ns �9 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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Forming these partial sums is obviously an nS-order process in multiplication 
and addition. The number of ma's is minimized, if the summation over the 
different indices is done in such an order, that the following conditions 
hold: 

ni < nj < nk < n~, (6.1) 

np ~ nq >= n r >= n s . (6.2) 

In particular, for the full transformation, defined by the condition 

n = ni = ni . . . . .  nr = ns (7) 

there will be a total of 

ma f = 4 n 5 (8) 

multiplications and additions. The number of multiplications and additions 
can be reduced, if use is made of the symmetry of the integrals (abLed) 

(ablcd) = (abide) = (baled) = (balde) 
(9) 

= (edlab) = (edlba) = (dc[ab) -- (dclba). 

If the functions a, b, c, and d belong to the same set, and if the indices run over 
the identical range, n,, then the list of the integrals which contains only one 
contribution for each set of integrals identical because of the relation (9), is 
defined by the following condition on the indices: 

b < a ,  

c ~ a ,  
(1o) 

d<=e, if c < a ,  

d < b ,  if c = a .  

In this case the list contains 

�9 (11)  nl = 1/2 n, .  (n, + 1)" 1/2(n, �9 (n, + 1)/2 + 1) ~ 1/8 gl a 

two-electron integrals. Making full use of this internal symmetry for the integrals 
to be computed, with the index range hi, but summing over the full range of 
indices of the basic integrals, np, the partial sums give rise to the following number 
of multiplications and additions: 

ma21 = ni" np" rip. 1/2. np. (np+ 1), (12.t) 

ma22 = 1/2 ni" (ni + 1)" np" 1/2" np" (np+ 1), (12.2) 

ma23 = 1/2 hi" (ni + 1)" ni" rip. rip, (12.3) 

ma24= 1/2n, "(hi+ 1)- 1./2.(1/2. n i ' ( n i+  1)+ 1)" np. (12.4) 

The total number of ma's for step 1 to 4 is then calculated to be 

may = 1/2 "(n z" (n o + 1)" ni" (np+ 1/2" (ni + 1)) 
(13) 

+ n p .  (ni + 1)" ni" (hi" np+ 1/4. ni(ni + 1) + 1/2)). 
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For the full transformation defined by (7) the number of multiplications and 
additions is computed to be 

may f  = 11/8 n 5 + 7/4 n 4 + 5/8 n 3 + 1/4 n 2 , (14) 

and for large values of n, the number of multiplications and additions will be 
approximately 

mayf  ~ 3/2 n 5 . (14') 

If the functions i, j , . . .  belong to different irreducible symmetry representations, 
say a, fl . . . . .  then only the following types of integrals have to be computed 

(aalaa), (~xal,g,6), (aflla/8), (15) 

all other integrals are identical to zero because of symmetry. For the integrals of 
type (aalaa) the number of multiplications and additions is given by formula (13), 
with n~ = np. For the integrals of type (aa[flfl), and (aft[aft) the number of multi- 
plications and additions is easily computed to be 

maaaflfl = 1/2 n~ " rip" (np+ 1/2. (n~ + 1))" nr(n~ + 1) 

+ 1/2n~'(n~+ 1)na" n~" (n,+ 1/2" (na+ 1)), 
(16) 

ma~flafl=n~.nv(nr.np(n~+np)+np.n~(nr+ 1/2n~(n~+ 1))). (17) 

In all cases where the set of functions p, q, r . . . .  consist of symmetry functions, 
np and nr will run only over  subranges of n, namely over the range of the 
appropriate symmetry representation. 

By comparing the formula (8) with the formulae (11), (16), and (17) it becomes 
clear that the number of multiplications and additions can be considerably re- 
duced, if use is made of the symmetry properties of both, or of one of the sets of 
functions involved. As a rough estimate, the transformation becomes a (max) 5- 
order algorithm, where max is the largest index range involved. 

Implementation 

It has been assumed that a transformation matrix C and a list of integrals 
(pq]rs), in the standard order defined by (10), is given as input, and that a 
list of integrals (ij[kl) in standard order, has to be generated. 

The implementation of the nS-order algorithm to be developed is aimed at 
handling transformations involving index ranges of 50 or more (n~50). 
Therefore all effort has been concentrated on finding the algorithm that needs 
a minimum amount of processor storage and of input/output operations. The 
algorithm developed consists essentially of a two-step process, applied once to 
the transformation (pqJrs)~(ijJrs), and once to the transformation (ij]rs)~(ij[kl). 
In this section, the present implementation of the algorithm is described. 
Symmetry is not taken into account explicitly, but the algorithm can be applied 
to each block of a symmetry partitioned transformation with minor modifications. 
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In the first, the reordering step of this two-step procedure, the standard 
integral list (pqlrs) is read into processor storage, one record at a time. This 
standard list is expanded by forming all integrals, that fulfill the condition 
p > q and r > s, by making use of the internal symmetry relation (9) between 
these integrals. Finally, the integrals are ordered into sublists. A sublist 
contains all integrals for the full index range p, and q(p => q) and for some index 
range r, and s(r > s). The index range of r, and s is determined such that the 
full sublist can be held in processor storage in the second, the transformation 
step. The reordering is performed by dividing the processor storage into as many 
boxes as there are sublists. The integrals are stored in the appropriate boxes, 
and are tagged by the sequential position number in the ordered list with 
p > q, and r >__ s, relative to the origin of each sublist. If a box is filled, the 
contents is written to external direct access storage, together with the direct 
access address of the contents of this box previously written. In this way 
"backchained" sublists are created on direct access storage, which can be 
retrieved by direct addressing record by record, in reverse order. By means of 
this technique only the direct access address of the contents of each box 
written last needs be kept in processor storage. - Each integral is uniquely 
identified by the sublist sequence number, by the sublist size (its index range), 
and by the relative position number in the sublist. This way of identifying the 
integrals reduces the number of indices actually to be stored with each integral 
to one: the relative position number. In addition, a nearly identical index 
manipulation in both of the two steps is avoided. The relative position number 
can be used directly in the transformation step. 

In the second, the transformation step, the sublists are processed sequen- 
tially, one at a time. Each of the sublists is read into the processor storage, 
record by record, and the integrals are transferred from the input buffer area 
to their position in the sublist according to their relative position number tag. 
In this way, a sequence of triangular matrices is built up, each matrix 
(indirectly) identified by an index pair r and s, and containing the full range of 
indexes p, and q with p > q. For each index pair r, and s, the transformation is 
carried out over the indexes p, and q generating the semi-transformed integrals 
(ijLrs) with i >j .  The summation is carried out stepwise according to the formulae 
(4.1) and (4.2). First the integrals (iq[rs) are formed for fixed i, r, and s, and for 
1 N q ___ n, and stored in a buffer area. Then the semi-transformed integrals 
(ijlrs) are computed for fixed i, r, and s and for 1 <__j<=i. Actually, each 
triangular matrix is expanded into square form, to avoid extra index manipulation 
in the formation of the partial sums (at the expense of a slightly larger processor 
storage request). Linear indexing is used throughout the program. The 
generated semi-transformed integrals (ijlrs) which are nonzero, or larger than a 
threshold are collected in a buffer area, together with the four indices i, j, r, and s 
and are finally written onto sequential external storage. 

In a completely analogous way, this two-step procedure then is applied to the 
transformation ( ijlrs) --, ( ijLkl). 

The approach described can practically be adapted to any size of processor- 
and direct access storage, by forming and processing a limited number of 
sublists at a time, according to the storage capacities. This makes necessary a 
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Table 1. Sample timings of the transformation algorithm 

Size of 

Basis FCT. Transf. FCT. 
SRT SRT 

CPU-Time 

IBM 360/91 

35 35 2'40" 
41 39 5' 7" 
46 42 7'20" 
70 68 ~40' 

repeated scan of the sequential integral lists (pq[rs), and (ij[rs), and increases the 
number of sequential files by one to a total of two, not including the original 
integral list (pq[rs). 

This method has been implemented in the form described on an IBM 360/91 
computer as part of the MUNICH quantum chemical program system [8]. The 
program has been written in IBM 360 Fortran, except for the direct access I/O 
routine which is written in IBM 360 Assembler language in order to use direct 
track addressing. This routine can be substituted by a routine using the Fortran 
direct write facilities. The program has been fully tested for function sets up to 
70 and has been in use for about 6 months. Typical timings for the transformation 
are given in the following Table I. 
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